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Introduction. We consider the St. Venant flexure problem for beams of narrow 

rectangular cross section, that is under the assumption of plane stress, for two reasons. 
The first of these is that it is possible to give an exact solution in closed form for this 
problem including significant effects of couple stresses. The second reason’is that this 

problem may be considered as a special case of the problem of deriving two-dimensional 
shell theory from tree-dimensional elasticity theory in the iterative manner which has 

been presented for the general case in September 1967 in Kopenhagen at the Second 
Symposium on Shell Theory of the International Union of Theoretical and Applied 
Mechanics (IU TAM). 

Formulation of the problem, Appropriate differential equations are three 

equilibrium equations 
%c,* + %c*, = 0, ol+v.x -t- a,,,, = 0, (la, b) 

%*x + $.v + ax, - uu, = 0 (lc) 

three compatibility equations (‘) 

e xx.u - elrx,x + kx = 0, e,,,, - e,,,, + k,, = 0, k,,, - k,*% = 0 G% ba Cl 

and six stress strain relations which are here been taken in the form 

(3% b) 

(3~s d) 

W. 4 

The’ system (1) to (3) is to be solved in the rectangular region $f 1 < C, 1 x 1 < L 
subject to boundary conditions 

*) which are a consequence of strain displacement relations 

exx = b ellY = qyt kx =9,x, k, =Jt,,,, ex, = 09X - % e, = q,, 4 9 
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x = fr,, --7,)4/=(0, Q, f QJJ) (5) 
--c 

In prescribing conditions for I = &L in integrated form, we allow for a solution by 

means of the semi-inverse procedure. 

Reduction to second-order differential equrtion. We stipulate in 
advance that ~7, and rz are linear in x; that UX,,, U, and TV are independent of X 

and that U,, vanishes identically, and write (6a, b, c, d, e, f) 

a xx = XL 7% =xTxr u,, = 0, 0,” = Sx,,, oU, = SUx, rv = T,, 

Introduction of (6) into equations (1) to (3). with primes indicating differentiation 

with respect to y , leaves the following system 

& -I- S,’ = 0, T, -I- T,’ -I- S,, - S, = 0 

SL.c ’ ( > T, 
-q- +cp1’,= 0, ( > ~‘+v++~=o, ($)&I 

x x u x 

From (8~) and (8a) follows 
T 

X= 
I+1 

.K, + = - K (!/ - yo) 
P ‘x 

where K and y, are constants of integration. 

From (8a) and (4) follows further 

--c 
Equation (7b) is written in the form 

S xv =S, -T, -T, 
and introduced into (8b) so as to leave the second order differential equation 

(7a, b) 

(8a, b, c) 

@a, t-9 

(loa, b) 

(11) 

(12) 

together with the boundary conditions T, (t_ C) = 0 . 
The constant K in Eqs.(9)-(12) is expressed in terms of the applied forces v by means 

of the relation 

-I( f [car= + Y(Y- YO) &cl +/ = Q (13) 
-c 

The geometrical meaning of K follows upon writing u,xx=e~l,~-k~= TJ c2r,=Kx. 

Explicit rolutlon for uniform cro8a rection berm. With allE, v, 
G and I’ independent of y we have first from (lob) and (13) 

From (9),(10) and (6) follow further as expressions for c&, U,.. and 7, 

The differential equation (12) reduces to 

(1% b) 

(1% b) 

(15c) 
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T,,L- pa - T, = (R, - 2v,G,) Ky c 

from which, with T, (-&c) = 0,’ 

(16) 

Ex - 2vXCX 
?I= - )La 

and then. in view of (60 

Finally. Eqs. (11) and (6d) give for the distribution of transverse shears (19) 

d xy = - 21’,c3 
Qc* ~(l-$)+r,-(~~-vv.)r,(l_~)] 
$- 2fsE,C” 

Insofar as the signifioance of Eqs.( 15),(18) and (19) ;s concerned, we may assume that 
x is of’order L and that C/L < 1. 

The C a I c r,, = 0. The assumption that the medium can support couple stresses 
between transverse fibers but that there can be no couple stresses between longitudinal 
fibers, reduces Eq. (19) to 

0 
Q P/24 tea - Ya) + r,c21 

xv = 2rqa + a/&&c= 
(20) 

and leaves equations (15) unchanged. 
We see that as long as r, < & we have US,, ,h uyxr and both these stresses are 

small compared to u,,. 

When r, is the same order as E, we still have that UXt, and u,,% are small compared 

to a,, . The difference between U,, and U, , however, is now of the same order of 

magnitude as these stresses themselves. 
Finally, when E, < rx, then UXt, is effectively uniform across the thickness of the 

beam and, moreover, as large or larger than the longitudinal normal stress U,,. At the 

same time, the contribution of the force stresses U,, to the section moment Qz is now 
small compared to the contribution of the couple stresses T, to this moment. 

The c a ae 1‘,, =O (I’,). For this case we are, additionally, interested in the mag- 
nitude of rt, relative to rX and in the relative magnitudes of the vatious components of 

swain. 
We will first consider this question subject to the restrictive assumptions that 

Ez/ G = 0 (1) and Y, = 0 (1) It is then readily seen from (18) and (15~) that 
xl,=: 0 (r&l L) and that U,, is either small compared to urx , which is the case as 

long as I’,/ E, = 0 (1). or ax,, is effectively given by the r,-term in (19). 

For a comparison of strains we reintroduce the quantity K of Eq. (14b) and write 

e XX =- - Kxy, e,,,, = Kv,gy, e,,x = K % q (20a. b. c) 
u 

(Is,, = li 
E 

.T ca - l/1 
q-+-- -t 2G, ““-(& -v$$ (I--hc$!$)] (2Od) 

li, = - lix, (21a. b) 

We now have that k,, is small compared to k,, for all possible values of A. Further- 

more, assuming that E,/ G, =0 (1), we have that eyX is small compared to exx. 
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The normal strain eYll is of the same order of magnitude as eXx, by way of the effect 
of Poisson’s ratio, as expected. 

In appraising erv we have that while the first term with EJG, is small compared 

to .e,, , the term with I’,/ G, does not necessarily have this property. In order to see the 
effect of the term with r,/c, we must consider the entire range of values of A = 

= ~2G,/l‘,/s, 
Writing 

I‘,, 7 1--c 
X c (22) 

it is seen that this term makes a contribution which is at the most of the same order of 
magnitude as the first term inside the brackets in (20d) and consequently is also small 
compared to exx. 

Altogether we have then that except for terms small of higher order the nature of the 
state of strain in the beam is effectively as if 

exx = ---Kaz~ . e,,,, = WPY, %x =o (2% b, cl 

exy = kx = - .h-x, k, = 0 We, f, g) 

Removal of the restriction EJ G = 0 (1) means that transverse shear deformation 
may have a first order effect on the state of strain in the beam. Evidently, in contrast to 
the conclusions implied by Eqs. (23), it is now possible that Ic, is of the same order of 
magnitude as k* and that e,, is of the same order of magnitude as e,,. 

Integro-differrntirl equation form of the problem, We deduce 
from the equilibrium equations (1) and (4) the relations 

and 

We deduce 

(‘2% b) 

(24~) 

(2% b) 

e 

cs kc - rlax,) drl 
1 5 .= 

+ ‘axvdq=O (25~) 
.--c --c 

from the compatibility equations (2) the relations 

k, = h’, -I- i k,,.dq, ex, = TX- ‘{ k,.dq + 1 ev,,,xdg (=a, b) 
0 0 0 

where K,, hx and 8, are functions of integration which are independent of the thick- 
ness coordinate I. 

Introduction of(24)and@Qinto the atresastrain relations (3) leaves as a system of 
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integro-differential equations 

II 

Bv% = - s axy, s dq - vu G,, (27b) 
-C 

2G, T [ x-- f k,drl+ [e,,,,xdq] = a,.. (27~) 
n 0 

II 

2Gyeux - - s -a,,,dq, CT=. [K, + f k,,,dq] = rx (274 e) 
-C 0 

cm 
Equations (27) may be considered as a system of six partial integro-differential equa- 

tions for six dependent variables uXjc, orv, T,, eyx, evv, k, with e,, Kz and ‘y, being 
parameters to be determined subsequently through use of the integrated equilibrium con- 

ditions (25). 

Th8 iterative procedure, Precondition for the possibility of solving the system 

(27) by means of an iterative procedure is the limitation to solutions with smallest char- 
acteristic length LJarge compared to the thickness dimension c. By smallest character- 

istic length we mean that (smallest) length over which significant changes of the depend- 

ent variables occur, i. e. 

and 

eyx,x = O$=, ( > QX”, Jc = 
o(3) 

u 
1 

I ebb, xdi = 0 + ew , etc. ( > 
n 

, etc. (2% b) 

WC) 

In applying the concept of this length L, its existence is assumed, the consequences 
of its existence are developed and finally it is verified that the properties of the solution 
which is obtained sre such as to make the initial assumption consistent. 

The simplest type of iterative solution of the system (27) which may be considered is 
one in which all s-derivatives are assumed to be small of higher order. This, however, 

turns ,out to be excessively restrictive. A more satisfactory choice for the first step of the 

iterative procedure is to begin with the system 

(2Ba. b) 

ww 

2G,e&) = _ _ b,(; dq, c CT&(‘) -_ &(l) 
e , (294 e) 

--c 
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) 
dq cm 

together with equations (25) for the quantities Q(O, etc. 
We now have Us and $0 directly from (29a)’ ahd (29e) and then e$ and e!i from 

(29b) and (29d). It remains to evaluate (29c) and (29f) so as to obtain ,U($ and ki;l . 

For this purpose we first obtain from (25~) and (29f) an ordinary differential equation 
for k$‘) 

2C, [,,(u - f k,(‘) dq + 5 (y,/ &) o,:‘h] = 
u 

V 
(39) 

= - cs (&/k”(t))’ - z (r) - 
x, x s 

a,(: dq 
-c ’ 

in which ~g and r$) are explicitly given as functions of y by (29a) and (29e). 
The second order-differential equation for v 

s k,(‘) dq 
u 

is to be solved subject to the boundary conditions rv/$l = 0 for y =i- c . Having #,‘l 
we then also have a$ from (29c) or (29f) in terms of rc), e:) and A$‘). Finally, equa- 
tions (25) are used as ordinary differential equations for the determination of-these three 

quantities as a function of x . For the relatively simple beam problem which is being 
considered, these differential equations may be reduced in order through integration, to 
read c c 

1 

c 

a,$‘dq = A’, 
s 

(3la, b. c) 

ax’;‘dq = Q, s (z,(l) - qa$)dq = M + Qx 
--c -C 

In this problem of St. Venant flexure as defined through the boundary conditions (5) 
is the case N =0 and n/r =O ( with N =k (1 and n/ --14 0 being associated with 
superposed problems of pure bending and stretching. 

Having the first step-solution ag , etc.,determination of a second step solution o(s) 
etc. requires the solution of the system 

x-r ’ 

Eve,,f) = a,$ - vvub,(j) 

II 

2Cve$ = - o,(%dq, s 
-c ’ 

c”rx [,p) + 1 kyf’idq] z Q) 

II 
$rvk,W = - 

(324 

(32b) 

(32~) 

(32d, e) 

(32f) 

together with equations (31) for $2, a:; and %$I. 
Conditions for the validity of the procedure follow from a consideration of the system 

(27) and (29) in the form 
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+ ey(:) = 0 (e$l)), 

Equations (33) will be found to imply the requirement of certain stipulations concern- 
ing admissible relative orders of magnitudes of the coefficient functions E, G, I' and 

v. At the same time, more stringent types of stipulations (such as for example that 

Lx=0 (G)) would allow us the use of a first-step equation system without some of the 
terms retained in (29) (without affecting the validity of the results obtained through use 

of equations (29) as they stand). 

Finally, we note the following property of the equations of the iterative procedure 
above. For the case that all elasticity coefficient functions;E, G;v and -I’ are indepen- 

dent of the coordinate 2, that is for the case corresponding to equations (6) to (13). the 
terms omitted in going from equations (27) to equations (29) happen to be those s-deriva- 
tive terms which vanish in the exact solution. As a consequence, for this special case the 
results of the first step of the iterative procedure, in the maximally complete form (29). 
would not be modified by the subsequent steps of the procedure. 

ON THE STABILITY OF THREE-DIMENSIONAL 

ELASTIC BODIES 
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The static stability of a three-dimensional elastic body with small subcritical strains is 
considered. Because of the assumption of smallness of the subcritical strains the results 
obtained below are applicable to the investigation of the stability of elastic bodies fab- 
ricated from a metal and from stiff bonded plastics. These results are also necessary 

for the latter since bonded plastics have low shear stiffness, hence application of the 

applied theories sometimes results in large errors in determining the critical forces. 
Special attention is paid to obtaining general solutions of the static stability equations 

of a three-dimensional body compressed along the OS s axis by stress resultants of inten- 

sity Q., and along the OS, and O& axes by stress resultants of intensity p. In the par- 
ticular case of p -.: 9 , solutions of a similar form [l] permitted the investigation of the 

stability of cylindrical shells [2] and bars [3]. The first members of the asymptotic expan- 
sions of the magnitudes of the critical force, which agree with the value of the critical 
force obtained with the aid of the Kirchhoff-Love hypothesis, were calculated in @] and 

c31. 
General solutions in invariant form are constructed below, which permit the investiga- 

tion of the stability of hollow cylindrical shells, and of shells with a filler, of bars, of 
plates both single and multilayered subjected to the loadings mentioned above. As an 
illustration, the stability of rectangular and circular plates under multilateral compres- 
sion is considered, where the boundary conditions are satisfied approximately in the inte- 

gral sense. 
Let us consider the static stability of a three-dimensional body with small subcritical 

strains compressed by stress resultants of intensity q along the xs axis and by stress 


